Toyota Avalon Service & Repair Manual: Camshaft Position Sensor "B" Bank 1 Circuit Short to Ground (P036511,P036515)

Toyota Avalon Service & Repair Manual / Engine / A25a-fxs Engine Control / Sfi System / Camshaft Position Sensor "B" Bank 1 Circuit Short to Ground (P036511,P036515)

DESCRIPTION

The camshaft position sensor (for exhaust camshaft) (EV1 signal) consists of a magnet and MRE (Magneto Resistance Element).

The exhaust camshaft has a timing rotor for the camshaft position sensor. When the exhaust camshaft rotates, changes occur in the air gaps between the timing rotor and MRE, which affects the magnetic field. As a result, the resistance of the MRE material fluctuates. The camshaft position sensor converts the camshaft rotation data to pulse signals, uses the pulse signals. The ECM uses the pulse signals to determine the camshaft angle. Then the ECM uses this data to control fuel injection duration, injection timing and the Variable Valve Timing (VVT) system.

DTC No.

Detection Item

DTC Detection Condition

Trouble Area

MIL

Memory

Note

P036511

Camshaft Position Sensor "B" Bank 1 Circuit Short to Ground

The camshaft position sensor (for exhaust camshaft) output voltage is less than 0.3 V for 4 seconds or more (1 trip detection logic).

  • Open or short in camshaft position sensor (for exhaust camshaft) circuit
  • Camshaft position sensor (for exhaust camshaft)
  • ECM

Comes on

DTC stored

SAE Code: P0367

P036515

Camshaft Position Sensor "B" Bank 1 Circuit Short to Battery or Open

The camshaft position sensor (for exhaust camshaft) output voltage is higher than 4.7 V for 4 seconds or more (1 trip detection logic).

  • Open or short in camshaft position sensor (for exhaust camshaft) circuit
  • Camshaft position sensor (for exhaust camshaft)
  • ECM

Comes on

DTC stored

SAE Code: P0368

Reference: Inspection using an oscilloscope.

Click here

MONITOR DESCRIPTION

If the output voltage transmitted by the camshaft position sensor (for exhaust camshaft) remains low or high, the ECM interprets this as a malfunction in the sensor circuit, illuminates the MIL and stores a DTC.

MONITOR STRATEGY

Related DTCs

P0367: Exhaust camshaft position sensor range check (low voltage)

P0368: Exhaust camshaft position sensor range check (high voltage)

Required Sensors/Components (Main)

Camshaft position sensor (for exhaust camshaft)

Required Sensors/Components (Related)

Crankshaft position sensor

Frequency of Operation

Continuous

Duration

4 seconds

MIL Operation

Immediate

Sequence of Operation

None

TYPICAL ENABLING CONDITIONS

All of the following conditions are met

-

Power switch

On (IG)

Time after power switch off to on (IG)

2 seconds or more

Auxiliary battery voltage

8 V or higher

Exhaust camshaft position sensor pulse input fail while starter off (P0365)

Not detected

TYPICAL MALFUNCTION THRESHOLDS

P0367: Range Check (Low Voltage)

Exhaust camshaft position sensor voltage

Less than 0.3 V

P0368: Range Check (High Voltage)

Exhaust camshaft position sensor voltage

Higher than 4.7 V

CONFIRMATION DRIVING PATTERN

HINT:

  • After repair has been completed, clear the DTC and then check that the vehicle has returned to normal by performing the following All Readiness check procedure.

    Click here

  • When clearing the permanent DTCs, refer to the "CLEAR PERMANENT DTC" procedure.

    Click here

  1. Connect the Techstream to the DLC3.
  2. Turn the power switch on (IG).
  3. Turn the Techstream on.
  4. Clear the DTCs (even if no DTCs are stored, perform the clear DTC procedure).
  5. Turn the power switch off and wait for at least 30 seconds.
  6. Turn the power switch on (IG) [A].
  7. Turn the Techstream on.
  8. Wait for 5 seconds or more [B].
  9. Enter the following menus: Powertrain / Engine / Trouble Codes [C].
  10. Read the pending DTCs.

    HINT:

    • If a pending DTC is output, the system is malfunctioning.
    • If a pending DTC is not output, perform the following procedure.
  11. Enter the following menus: Powertrain / Engine / Utility / All Readiness.
  12. Input the DTC: P036511 or P036515.
  13. Check the DTC judgment result.

    Techstream Display

    Description

    NORMAL

    • DTC judgment completed
    • System normal

    ABNORMAL

    • DTC judgment completed
    • System abnormal

    INCOMPLETE

    • DTC judgment not completed
    • Perform driving pattern after confirming DTC enabling conditions

    HINT:

    • If the judgment result is NORMAL, the system is normal.
    • If the judgment result is ABNORMAL, the system is malfunctioning.
    • [A] to [C]: Normal judgment procedure.

      The normal judgment procedure is used to complete DTC judgment and also used when clearing permanent DTCs.

    • When clearing the permanent DTCs, do not disconnect the cable from the auxiliary battery terminal or attempt to clear the DTCs during this procedure, as doing so will clear the universal trip and normal judgment histories.

WIRING DIAGRAM

CAUTION / NOTICE / HINT

NOTICE:

  • Vehicle Control History may be stored in the hybrid vehicle control ECU assembly if the engine is malfunctioning. Certain vehicle condition information is recorded when Vehicle Control History is stored. Reading the vehicle conditions recorded in both the Freeze Frame Data and Vehicle Control History can be useful for troubleshooting.

    Click here

    (Select Powertrain in Health Check and then check the time stamp data.)

    Click here

  • If any "Engine Malfunction" Vehicle Control History item has been stored in the hybrid vehicle control ECU assembly, make sure to clear it. However, as all Vehicle Control History items are cleared simultaneously, if any Vehicle Control History items other than "Engine Malfunction" are stored, make sure to perform any troubleshooting for them before clearing Vehicle Control History.

    Click here

HINT:

Read Freeze Frame Data using the Techstream. The ECM records vehicle and driving condition information as Freeze Frame Data the moment a DTC is stored. When troubleshooting, Freeze Frame Data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air fuel ratio was lean or rich, and other data from the time the malfunction occurred.

PROCEDURE

1.

CHECK HARNESS AND CONNECTOR

*a

Front view of wire harness connector

(to Camshaft Position Sensor (for Exhaust Camshaft))

HINT:

Make sure that the connector is properly connected. If it is not, securely connect it and check for DTCs again.

(a) Disconnect the camshaft position sensor (for exhaust camshaft) connector.

(b) Turn the power switch on (IG).

(c) Measure the voltage according to the value(s) in the table below.

Standard Voltage:

Tester Connection

Condition

Specified Condition

C15-3 (VC2) - Body ground

Power switch on (IG)

4.5 to 5.5 V

C15-1 (VVE+) - Body ground

Power switch on (IG)

3.0 to 5.0 V

(d) Turn the power switch off and wait for at least 30 seconds.

(e) Measure the resistance according to the value(s) in the table below.

Standard Resistance:

Tester Connection

Condition

Specified Condition

C15-3 (VC2) - C15-1 (VVE+)

Power switch off

1.425 to 1.575 kΩ

C15-2 (VVE-) - Body ground

Always

Below 1 Ω

OK

REPLACE CAMSHAFT POSITION SENSOR (FOR EXHAUST CAMSHAFT)

NG

2.

CHECK HARNESS AND CONNECTOR (CAMSHAFT POSITION SENSOR (FOR EXHAUST CAMSHAFT) - ECM)

(a) Disconnect the camshaft position sensor (for exhaust camshaft) connector.

(b) Disconnect the ECM connector.

(c) Measure the resistance according to the value(s) in the table below.

Standard Resistance:

Tester Connection

Condition

Specified Condition

C15-1 (VVE+) - C55-91 (EV1+)

Always

Below 1 Ω

C15-2 (VVE-) - C55-114 (EV1-)

Always

Below 1 Ω

C15-3 (VC2) - C55-113 (VCE1)

Always

Below 1 Ω

C15-1 (VVE+) or C55-91 (EV1+) - Body ground and other terminals

Always

10 kΩ or higher

C15-2 (VVE-) or C55-114 (EV1-) - Body ground and other terminals

Always

10 kΩ or higher

C15-3 (VC2) or C55-113 (VCE1) - Body ground and other terminals

Always

10 kΩ or higher

OK

REPLACE ECM

NG

REPAIR OR REPLACE HARNESS OR CONNECTOR

    Camshaft Position Sensor "A" Bank 1 or Single Sensor No Signal (P034031)

    Exhaust Gas Recirculation "A" Circuit Current Below Threshold (P040318,P040319,P140018,P140019)

    See More:

    Toyota Avalon Service & Repair Manual > Electronically Controlled Brake System(for Hv Model): Brake Hold Operated Indicator Light Circuit
    DESCRIPTION The brake hold operated indicator light illuminates when the brake hold system is operating (vehicle stopped via brake fluid pressure hold) and turns off when the brake hold system operation is finished (brake fluid pressure decreases). The brake hold system may not operate depending on ...

    Toyota Avalon Owners Manual

    Toyota Avalon Service & Repair Manual

    © 2024 Copyright www.tavalon.net
    0.0299